

Challenges in the Treatment of Drug-Resistant Gram-Negative Infections

Hsu Li Yang June 2022

Disclosure

Research Funding:

- MSD
- Pfizer
- AstraZeneca
- Janssen-Cilag

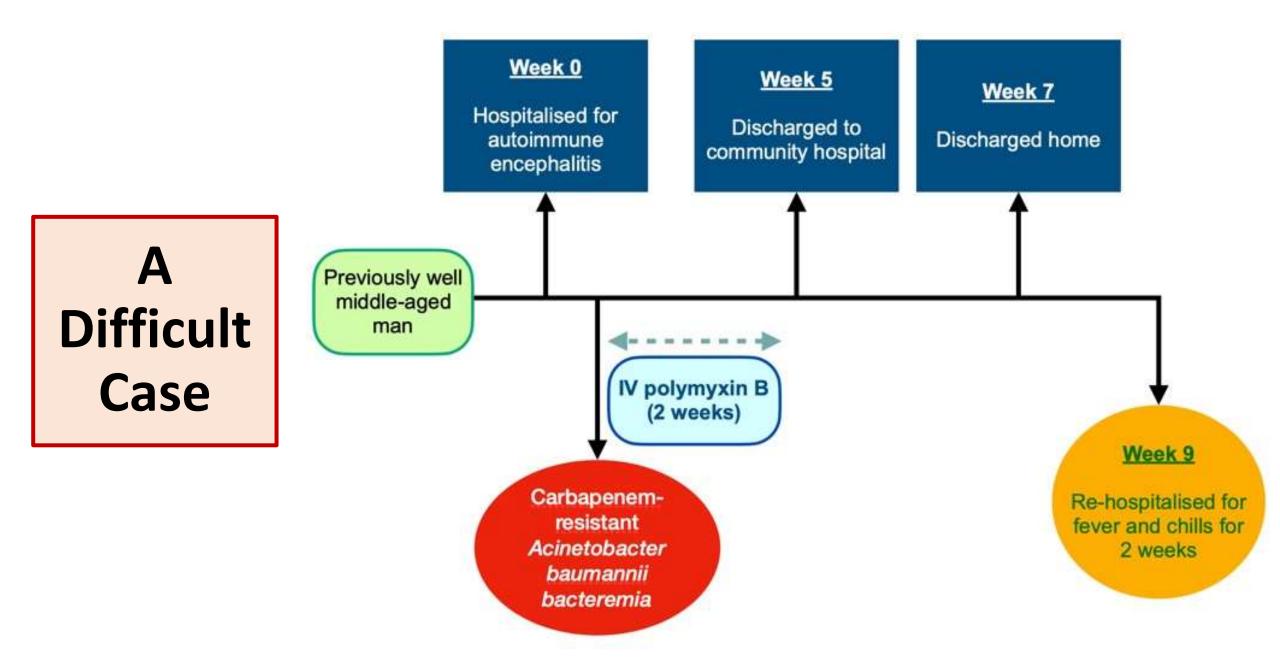
Advisory Board:

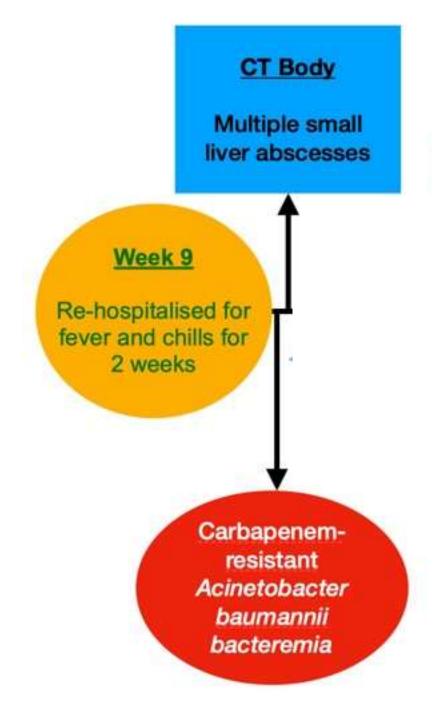
- Janssen-Cilag (Doripenem)
- Pfizer (vaccines, antimicrobials)
- MSD (vaccines)

Educational grants:

- Pfizer
- BioMerieux
- MSD

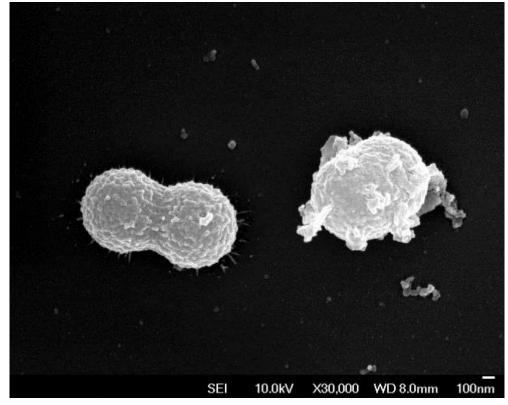
Overview

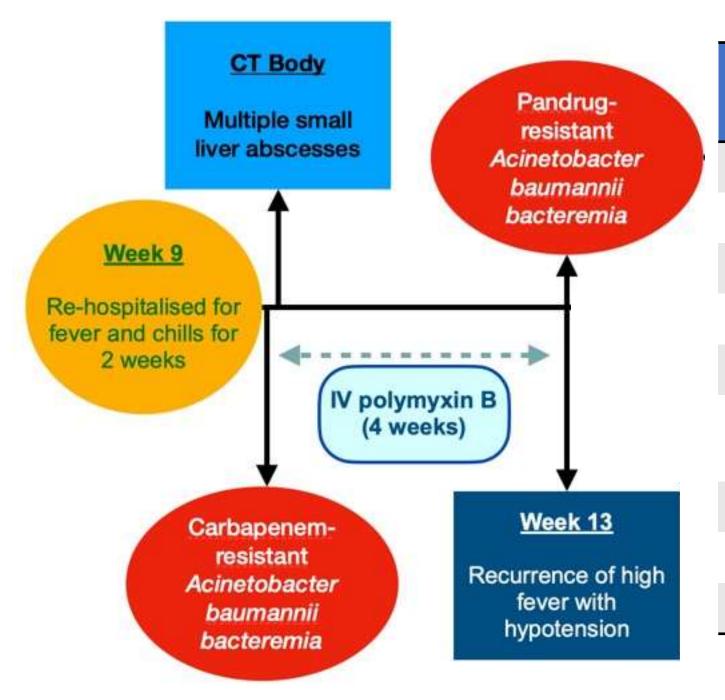

A Difficult Case


AMR & the Antibiotic Pipeline

 Key drug-resistant bacterial pathogens: Carbapenem-resistant Gram-negative bacteria (CR-GNB)

- Treatment guidelines
 - Combination vs mono-therapy for CR-GNB


Conclusion



Susceptibility Testing Results (A.	baumannii)
Ampicillin/sulbactam	Resistant
Ceftazidime	Resistant
Piperacillin/Tazobactam	Resistant
Meropenem	Resistant
Ciprofloxacin	Resistant
Trimethoprim/Sulfamethoxazole	Resistant
Amikacin	Resistant
Tigecycline	Resistant
Polymyxin B	S (MIC = 0.38)

Susceptibility Testing Results (A. baumannii)

Ampicillin/sulbactam Resistant

Ceftazidime Resistant

Piperacillin/Tazobactam Resistant

Meropenem Resistant

Ciprofloxacin Resistant

Trimethoprim/ Resistant

Sulfamethoxazole

Amikacin Resistant

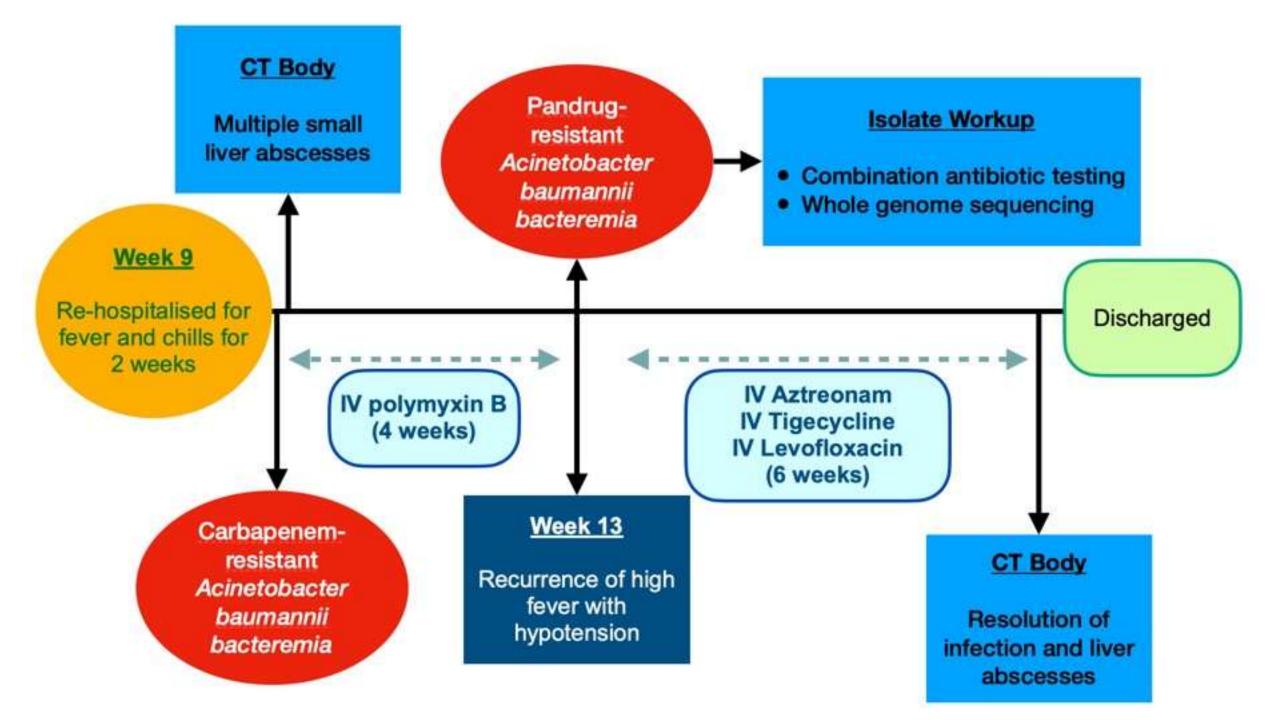
Tigecycline Resistant

Polymyxin B R (MIC = 256)

CT Body Pandrug-Multiple small resistant liver abscesses Acinetobacter baumannii bacteremia Week 9 Re-hospitalised for fever and chills for 2 weeks IV polymyxin B (4 weeks) Week 13 Carbapenemresistant Recurrence of high Acinetobacter fever with baumannii hypotension bacteremia

Isolate Workup

- Combination antibiotic testing
- Whole genome sequencing


RESEARCH ARTICLE

Using an Adenosine Triphosphate Bioluminescent Assay to Determine Effective Antibiotic Combinations against Carbapenem-Resistant Gram Negative Bacteria within 24 Hours

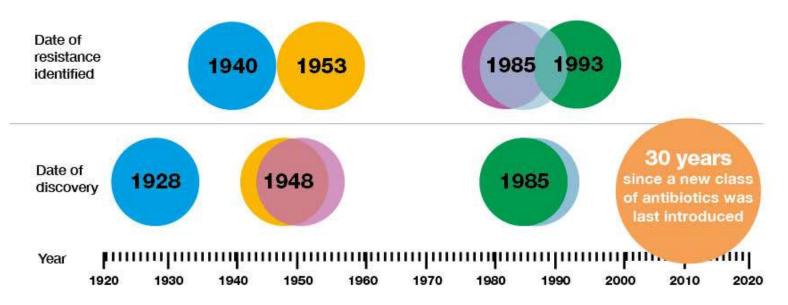
Yiying Cai¹, Hui Leck¹, Tze Peng Lim¹, Jocelyn Teo¹, Winnie Lee¹, Li Yang Hsu², Tse Hsien Koh³, Thuan Tong Tan⁴, Thean-Yen Tan⁵, Andrea Lay-Hoon Kwa^{1,6,7}*

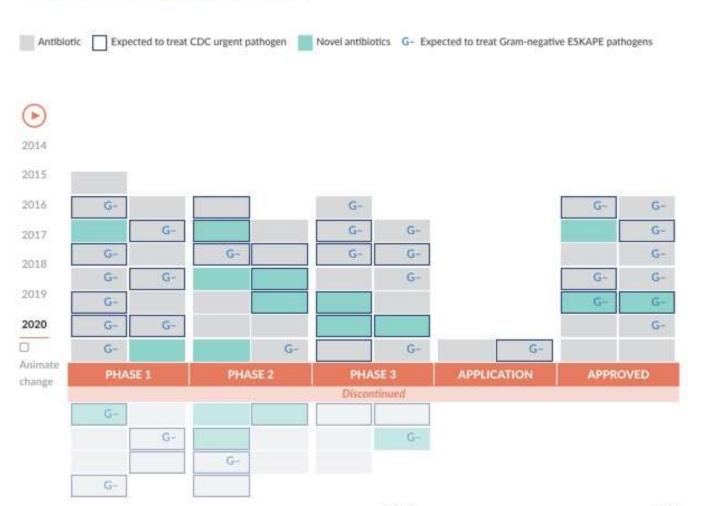
1 Department of Pharmacy, Singapore General Hospital, Singapore, Singapore, 2 Department of Infectious Diseases, National University Health Systems, Singapore, Singapore, 3 Department of Pathology, Singapore General Hospital, Singapore, Singapore, 4 Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore, 5 Department of Laboratory Medicine, Changi General Hospital, Singapore, Singapore, 6 Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, Singapore, 7 Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore

Antimicrobial Resistance

- One of the world's greatest public health threats
 - ≈1.2 million deaths in 2019
 - ≈10 million deaths per year by 2050
 - Annual global GDP fall of 1.1% 3.8% by 2050

Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis


Antimicrobial Resistance Collaborators*



Tracking the Global Pipeline of Antibiotics in Development, March 2021

ISSUE BRIEF March 9, 2021 Topics: Antibiotics Projects: Antibiotic Resistance Read time: 6 min

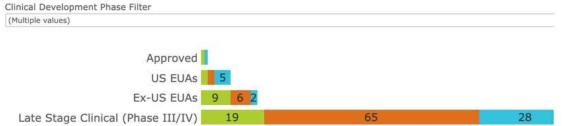
Antibiotics in Development Since 2014

70

60

Number of Therapies

The COVID-19 Late Stage Clinical Pipeline by Phase and Strategy


Failed/Inactive

Antivirals

Vaccines

Treatments

Hover over each color to see the development strategy and use the development phase filter below to view only

20

Data as of: 23/08/2021 19:34:32

Carbapenem-Resistant Gram-Negative Infections Top the List of AMR Threats

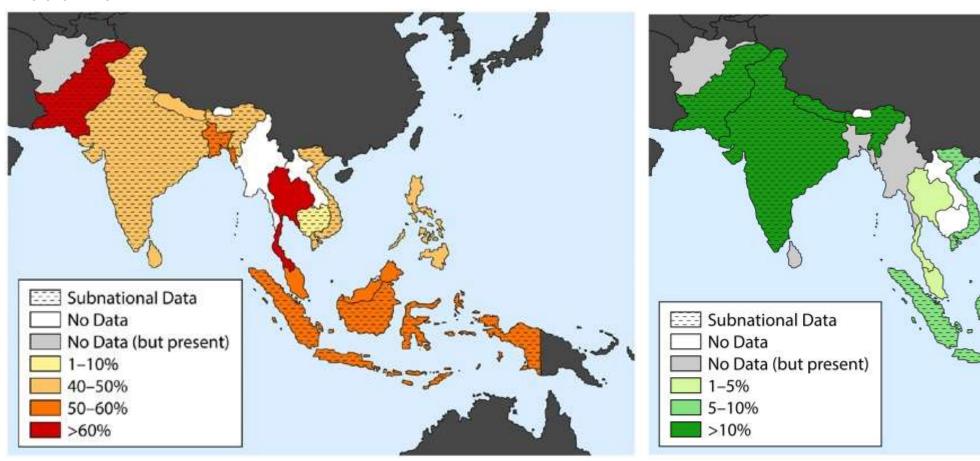
WHO priority pathogens list for R&D of new antibiotics

Priority 1: CRITICAL

- Acinetobacter baumannii, carbapenem-resistant
- Pseudomonas aeruginosa, carbapenem-resistant
- Enterobacteriaceae, carbapenem-resistant, ESBL-producing

Priority 2: HIGH

- Enterococcus faecium, vancomycin-resistant
- Staphylococcus aureus, methicillin-resistant, vancomycin-intermediate and resistant
- Helicobacter pylori, clarithromycin-resistant
- · Campylobacter spp., fluoroquinolone-resistant
- Salmonellae, fluoroquinolone-resistant
- Neisseria gonorrhoeae, cephalosporin-resistant, fluoroquinolone-resistant


Priority 3: MEDIUM

- Streptococcus pneumoniae, penicillin-non-susceptible
- · Haemophilus influenzae, ampicillin-resistant
- Shigella spp., fluoroquinolone-resistant

Carbapenem-Resistant Gram-Negative **Infections Top the List of AMR Threats**

Carbapenem-Resistant *Acinetobacter* baumannii

Carbapenem-Resistant Enterobacterales

Mechanisms of Carbapenem Resistance

Acinetobacter baumannii

- Multiple carbapenemases (mainly OXA-23)
- Drug efflux pumps (minor)
- Altered membrane proteins (minor)

Enterobacterales

- ESBL/ampC + porin loss:
 - Generally low-level carbapenem resistance.
 - Poorly transmissible primarily clonal spread.
- Plasmid-borne carbapenemases:
 - Variable (low- to high-level) carbapenem resistance.
 - Highly transmissible via plasmid transfer or clonal spread.
 - KPC, OXA, NDM, IMP, others

IDSA Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections: Version 1.0

Published by IDSA, 3/7/2022

A Focus on Extended-Spectrum β-lactamase Producing Enterobacterales,

Carbapenem-Resistant Enterobacterales, and Pseudomonas aeruginosa with

Difficult-to-Treat Resistance

Carbapenem-Resistant Enterobacterales

Carbapenemase absent	High-dose meropenem (if susceptible) Otherwise see below				
Carbapenemase present	Meropenem-vaborbactam				
	Ceftazidime-avibactam (+/- Aztreonam)				
	Imipenem-relebactam				
	Cefiderocol				
	*Tigecycline or Eravacycline				
	**Polymyxins				

*Used if resistant to beta-lactams or patient allergic. Not recommended for urinary tract or bloodstream infections

**Not recommended alone or in combination

IDSA Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections: Version 2.0

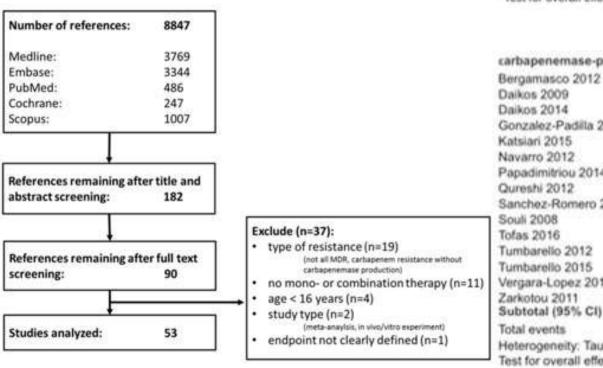
Published by IDSA, 3/31/2022

A focus on AmpC β-lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections

> Carbapenem-Resistant A. baumannii

Mild infections	Ampicillin/sulbactam (if susceptible)				
	Otherwise other single agents as susceptible				
Severe infections	*Combination therapy preferred until clinical response seen				
	High-dose ampicillin/sulbactam AND/OR				
	Polymyxin B AND/OR				
	Tigecycline AND/OR				
	Minocycline				
	**Colistin				

^{*}However, lack of reliable clinical trial data


^{**}Less preferred compared to Polymyxin B (less favorable pharmacokinetic profile)

OPEN

Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: Systematic Review and Meta-Analysis

Adrian Schmid, Aline Wolfensberger, Johannes Nemeth, Peter W. Schreiber, Hugo Sax & Stefan P. Kuster*

Satirel 2014	46	145	38	105	6.4%	0.88 [0.62, 1.24
reire 2016	7	12	14	23	3.3%	0.96 (0.54, 1.71
ioff 2014	14	52	0	3	0.2%	2.19 (0.16, 30.35
fe 2016	10	20	13	24	3.4%	0.92 [0.52, 1.64
fernandez-Torres 2012	8	29	19	35	2.7%	0.51 (0.26, 0.99
Cuo 2007	13	36	. 7	12	2.8%	0.62 [0.32, 1.18
ee 2005	13	30	24	59	4.0%	1.07 [0.64, 1.78
im 2011	5	11	6	20	1,5%	1.52 [0.60, 3.84
ópez-Cortés 2014	8	33	16	68	2.2%	1.03 [0.49, 2.16
Shields 2012	11	33	4	4	3.5%	0.38 [0.22, 0.65
asbakan 2011	28	49	12	23	4.6%	1.10 [0.69, 1.74
seng 2007	14	28	9	22	2.9%	1.22 [0.65, 2.28
sioutis 2016	17	61	9 8 21	23	2.5%	0.80 [0.40, 1.60
/ilmaz 2015	16	33	21	37	4.7%	0.85 [0.54, 1.34
Subtotal (95% CI)		572		458	44.7%	0.85 (0.71, 1.03
otal events	210		191			

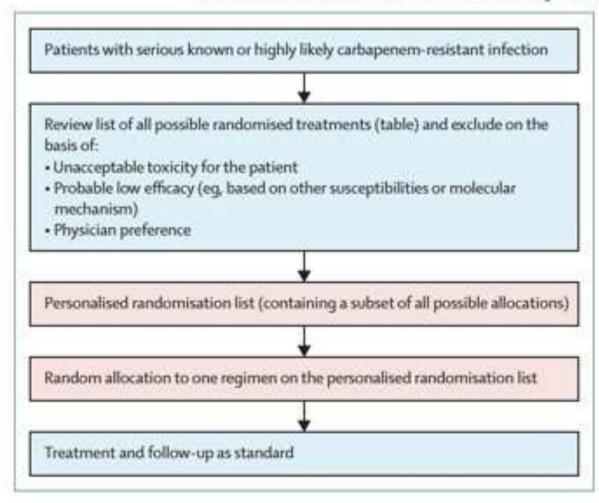
carbapenemase-producing Enterobacteriaceae Bergamasco 2012 0.48 [0.12, 1.88] 0.7% Daikos 2009 37 0.4% 10 0.31 [0.04, 2.17] 32 72 5.3% Daikos 2014 0.61 [0.41, 0.92] Gonzalez-Padilla 2015 1.0% 0.95 [0.30, 2.99] Katsiari 2015 0.9% 1.68 [0.49, 5.81] 0.9% 1.69 (0.49, 5.79) Navarro 2012 1.3% Papadimitriou 2014 0.69 [0.25, 1.87] Qureshi 2012 19 0.8% 0.23 [0.06, 0.88] Sanchez-Romero 2012 1.5% 1.75 [0.69, 4.44] 1.2% 1.38 [0.49, 3.94] Souti 2008 Tofas 2016 2.0% 0.73 [0.34, 1.60] 5.4% Tumbarello 2012 0.63 [0.42, 0.94] 118 307 9.7% Tumbarello 2015 0.79 [0.64, 0.97] Vergara-Lopez 2015 0.4% 0.28 [0.04, 1.91] Zarkotou 2011 20 15 0.2% 0.05 (0.00, 0.83)

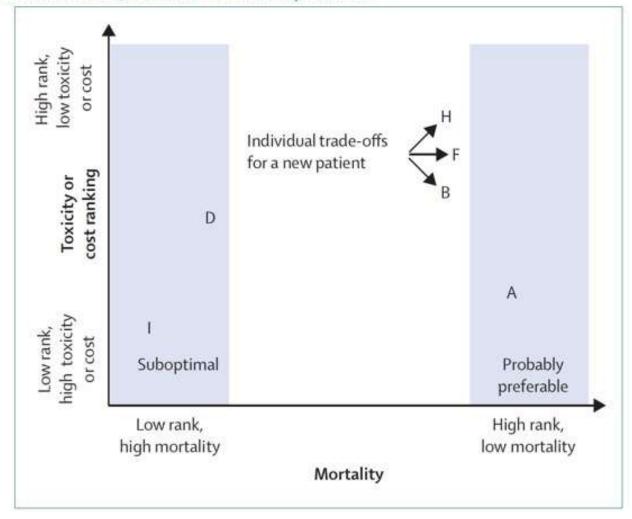
743

239

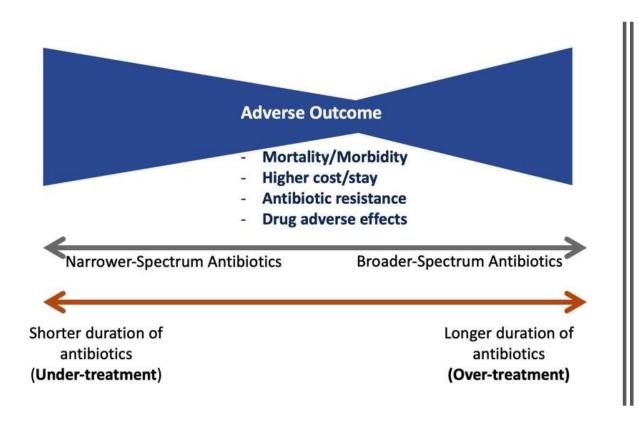
0.74 [0.59, 0.93]

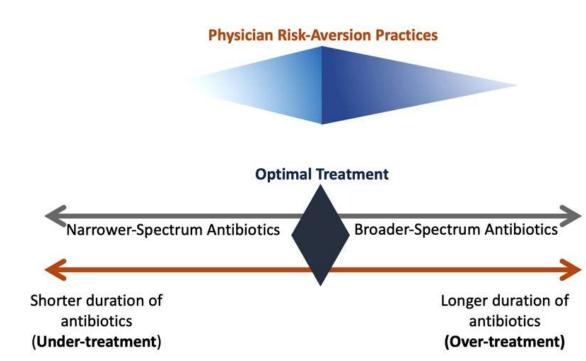
31.7%


Heterogeneity: $Tau^{\mu} = 0.04$; $Chi^{\mu} = 18.81$, df = 14 (P = 0.17); $I^{\mu} = 26\%$


229

Test for overall effect: Z = 2.52 (P = 0.01)


Personalised randomised controlled trial designs—a new paradigm to define optimal treatments for carbapenem-resistant infections

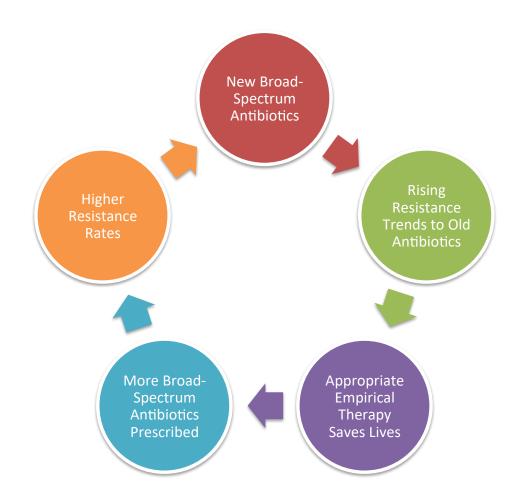

A Sarah Walker*, Ian R White*, Rebecca M Turner, Li Yang Hsu, Tsin Wen Yeo, Nicholas J White, Mike Sharland*, Guy E Thwaites*

Antibiotic Prescription Spectrum

On average, 30% of antimicrobial prescriptions are inappropriate.

Decision to have antimicrobial stewardship – given sufficient resources – is completely logical.

"The Culture of Antibiotic Prescription"


"Broader is better"

"Failure to respond is failure to cover"

"When in doubt, change drugs or add another"

"More diseases = more drugs"

"Antibiotics are nontoxic"

Control of AMR – "30,000 feet view"

- Recommendations by the Interagency Coordination Group on Antimicrobial Resistance (IACG)
 - Accelerate progress in countries
 - Equitable and affordable access to existing and new antimicrobials, vaccines and diagnostics
 - Prudent use of the above by licensed professionals in human, animal and plant health.
 - Phase out use of antimicrobials for growth promotion.
 - Accelerate development and implementation of national AMR plans.
 - Innovate to secure the future
 - Increase investment and innovation in new antimicrobials, diagnostics, vaccines, waste management, and alternatives to antimicrobials.
 - Strengthen implementation and operational research and research coordination and collaboration in a One Health context.

Conclusion

Carbapenem- and multidrug-resistant Gram-negative bacteria are a global health threat.

Current evidence for optimal treatment of these bacteria is not robust.

An approach to reduce the impact of AMR must be balanced between reducing selection pressure of antibiotics as well as strengthening the antibiotic pipeline.

TOPAY, AN
ESTIMATED 700,000
PEOPLE DIE EACH YEAR
FROM DRUG-RESISTANT
INFECTIONS...

AND SOME EXPERTS PREDICT THAT IF WE PON'T CHANGE OUR WAYS, THAT NUMBER COULD RISE TO TEN MILLION BY 2050.

The End